
The beach and the brachistochrone 

 

Introduction 

In explanations for the law of refraction of light, the analogy has been used of a 

lifeguard on a beach who must get to a swimmer in trouble as quickly as possible. The 

lifeguard must run across the sand to the water and then swim. The speeds of the 

lifeguard across sand and water are different so that to minimise the time taken to get 

to the swimmer the lifeguard should choose a path that is not necessarily direct but 

may be kinked at the edge of the water.  

 

 

In the case of a ray of light, the phenomenon of refraction and its physical law was 

known to the mathematician and physicist Ibn Sahl [1] living in Baghdad around 984. 

Over five centuries later, the law was rediscovered by Thomas Harriot (1602), 

Willibrord Snellius (1621), Rene Descartes (1637) and Pierre de Fermat (1638).  

Fermat derived the refraction law based on his principle of least action – that the 

natural path of a light ray would minimise the time taken – without an explanation as 

to why this should be so. For the derivation he used a procedure he called 

adequality [2], an idea not far removed from the differential calculus, that enabled him 

to find maxima or minima and tangents to curves. Thus, Fermat showed that the 

observed refraction law was consistent with the least-time principle. A plausible 

physical explanation of this puzzling result was provided years later, in terms of wave 

mechanics, by Christiaan Huygens (1678) [3], and much later again in terms of modern 

quantum electrodynamic theory.    
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In this article we derive Snell’s law using the modern form of differential calculus 

with the lifeguard example as a model. We go on to consider optimum paths when the 

softness of the sand varies, that is, the medium is anisotropic. Finally, we use the 

same idea and a procedure somewhat like one used by Johann Bernoulli (1697) to 

obtain the mathematical form of the brachistochrone. 

The lifeguard 

Let the lifeguard’s speed across sand be 
1v  and across water be 

2v . Using the symbols 

in the following diagram, an expression can be written for the total time of the 

lifeguard’s excursion in terms of the variable distance x. 

 

 

 

 

 

 

 

 

 

Thus, 
22 xap +=  and 

22 )( xDbq −+= .  

The time to cover distance p over sand is 

𝑡1 =
√𝑎2 + 𝑥2

𝑣1
 

and the time to cover distance q through water is 

𝑡2 =
√𝑏2 + (𝐷 − 𝑥)2

𝑣2
 

Hence, the total time taken, T , is given by 21 ttT += . We need the value of x that 

minimises T. Differentiating T with respect to x, we obtain 
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Hence, on equating the derivative to zero, we have 
2
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 and if 𝑥 is chosen so 

that this is satisfied, the time T is minimised. The relation does not immediately 

provide the least-time path but it is of interest since it has the form of Snell’s law of 

refraction of light, which is observed experimentally.  

Snell’s law 

Snell’s law is usually stated in terms of refractive indices, 𝑛 =
𝑐

𝑣
 , where 𝑐 and 𝑣 are 

respectively the velocities of light in empty space and in the medium in question. 

Thus, 𝑣 =
𝑐

𝑛
 and the derivation above is equivalent to 

sin 𝜙1

sin 𝜙2
=

𝑛2

𝑛1
.  

Since this condition holds, it appears, by analogy with the lifeguard,  that a ray of 

light travelling from one medium to another takes a least-time path.  

Varying speeds over the sand 

Complicating the situation, we might imagine that the sand on the beach is not 

uniformly packed, so that the running lifeguard travels at different speeds according 

to the softness of the sand along the way. 

Suppose there are, say, three regions of sand between the lifeguard station and the 

water such that the speed of running increases as the lifeguard crosses from one 

region to the next. The best path through the sand could be shaped approximately as 

in the following diagram. 
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We can show that the path OABW in the next diagram (extracted from the one above) 

with the angles determined at each of the boundaries according to Snell’s law, is a 

minimum time path. 

 

 

 

 

 

 

Suppose the time-minimising path for the lifesaver passes through K*, a point in the 

second of the three regions. In this region the speed of the lifesaver is 𝑣2. Then, points 

A* and B* on the boundaries between the sand regions are determined by Snell’s law 

to minimise the time for the paths OA*K* and K*B*W.  

However, if A*, K* and B* are not collinear, there will be a faster, direct path 

between A* and B*. Hence, the time-minimising path for the lifesaver does not 

include K* in this case. Therefore, we must require K* to lie on a line segment AB 

that connects points on the two boundaries. For example, K* could coincide with K in 

the diagram. 

Points A and B are determined such that Snell’s law is simultaneously satisfied at 

both boundaries and the path from A to B is a line. Thus, 
sin 𝜙1

sin 𝜙2
=

𝑣1

𝑣2
 and 

sin 𝜙2

sin 𝜙3
=

𝑣2

𝑣3
, as 

required. It follows, incidentally, by multiplying the two ratios, that 

sin 𝜙1

sin 𝜙3
=

𝑣1

𝑣3
             (1) 

Similarly, the diagram below shows how the lifeguard should approach the endpoint 

W. Suppose the minimum time path contains a point W* to the left of W at the edge 

of the water. Points A* and B* have been determined so that Snell’s law is satisfied. 

Clearly, a direct path B*W is faster than B*W*W. Therefore, point W* cannot belong 

to the minimum time path unless it coincides with the terminal point W. 
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Similar arguments can be applied when more regions are introduced, each permitting 

a different running speed. The paths connecting successive boundaries between 

regions must be line segments and the optimal path must be a polygon with Snell’s 

law determining the angles at each boundary.  

 

 

 

 

 

 

 

As each of the speed regions is subdivided, with 𝑣1 < 𝑣2 < ⋯ < 𝑣6, a new optimal 

polygonal path appears. The process of subdividing the speed regions can be repeated 

until, in the limit, the speed of the lifeguard running through the sand varies 

continuously. The polygonal least-time path becomes a smooth curve.  

Equation (1) holds throughout the limiting process and so, for two distinct points 𝐴 

and 𝑋 on a smooth least-time path, but possibly not at the endpoints, we have 

sin 𝜙𝐴

sin 𝜙𝑋
=

𝑣𝐴

𝑣𝑋
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Taking 𝐴 to be a fixed point makes 
𝑣𝐴

sin 𝜙𝐴
= 𝜌 a constant, so that by (1) sin 𝜙𝑋 is 

related to 𝑣𝑋 by  

𝑣𝑋 = 𝜌 sin 𝜙𝑋              (2) 

where 0 ≤ 𝜙𝑋 ≤
𝜋

2
 is assumed.  

For convenience, in what follows the image of the lifeguard’s path across the sand has 

been re-oriented and we have inserted a coordinate system so that the endpoint 𝑊 is 

at the origin. The lifeguard station is located at point 𝐴(𝑥𝐴, 𝑑).  

 

 

 

 

 

 

 

We assume 𝑣min > 0 so that 𝜙𝑋 > 0 everywhere on the path. At 𝑣max it can happen 

that 𝜙𝑋 =
𝜋

2
 and from (2) it is clear that in this case 𝜌 = 𝑣max. Otherwise, 𝜌 > 𝑣max. 
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The scalar quantity 𝑣 is the magnitude of the velocity vector tangential to the path at a 

time 𝑡, so that in a small interval 𝛿𝑡 we have 𝛿𝑥 = 𝑣 sin 𝜙 𝛿𝑡 and orthogonal to it, 

𝛿𝑦 = 𝑣 cos 𝜙 𝛿𝑡. 

Using (2) we have 𝛿𝑦 = 𝜌sin 𝜙 cos 𝜙 𝛿𝑡 and 𝛿𝑥 =  𝜌sin2 𝜙 𝛿𝑡. Thus, in the limit, we 

have the equation 
𝑑𝑦

𝑑𝑥
=

cos 𝜙

sin 𝜙
 at an arbitrary point on the path. Then, 

𝑑𝑦

𝑑𝑥
=

√1 − (
𝑣
𝜌

)
2

𝑣
𝜌

=
√𝜌2 − 𝑣2

𝑣
           (3) 

 

A particular speed function  

The precise shape of the best path depends on how the runner’s speed through the 

sand varies. In a somewhat unrealistic model, the speed 𝑣 is related to 𝑑 − 𝑦, the 

runner’s distance from the lifeguard station in the direction directly towards the water, 

by a linear function in the form 𝑣 = 𝑎(𝑑 − 𝑦) + 𝑏 where 𝑦 varies from 0 to 𝑦𝑊. 

We make the substitution 𝑣 = 𝑎(𝑑 − 𝑦) + 𝑏 in equation (3). Thus,  

𝑑𝑦

𝑑𝑥
=

√𝜌2−(𝑎(𝑑−𝑦)+𝑏)2

𝑎(𝑑−𝑦)+𝑏
 , and this differential equation has the solution 

𝑥 =
1

𝑎
√𝜌2 − (𝑎(𝑑 − 𝑦) + 𝑏)2 + 𝐶. 

Since 𝑦 = 0 when 𝑥 = 0, we find 𝐶 = −
1

𝑎
√𝜌2 − (𝑎𝑑 + 𝑏)2. Then, after some 

manipulation, 

(𝑥 − 𝐶)2 + (𝑦 − (𝑑 +
𝑏

𝑎
))

2

= (
𝜌

𝑎
)

2

. 

Hence, the least-time path is an arc of a circle with radius 𝑟 =
𝜌

𝑎
 and centre 

(−
1

𝑎
√𝜌2 − (𝑎𝑑 + 𝑏)2, 𝑑 +

𝑏

𝑎
 ).  

Two ways in which a particular path could lie on this circular arc are illustrated 

below.  

  



Case 1: 𝜌 > 𝑣max 
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The values for 𝑎, 𝑏 and 𝜌 = 𝑎𝑟 are to be determined.  

When 𝑦 = 𝑑, the condition 𝑣 = 𝑎(𝑑 − 𝑦) + 𝑏 implies, 𝑣min = 𝑏. 

Similarly, when 𝑦 = 0, we have 𝑎𝑑 + 𝑏 = 𝑣max . Therefore , 𝑎 =
𝑣max−𝑣min

𝑑
 

 

In each case, the path belongs to the circle 

(𝑥 +
1

𝑎
√𝜌2 − (𝑎𝑑 + 𝑏)2)

2

+ (𝑦 − (
𝑎𝑑 + 𝑏

𝑎
))

2

= (
𝜌

𝑎
)

2

. 

That is, the circle (𝑥 +
1

𝑎
√𝜌2 − 𝑣max

2)
2

+ (𝑦 −
1

𝑎
𝑣max)

2

= (
𝜌

𝑎
)

2

. 

Given the point (𝑥𝐴, 𝑦𝐴) and values for 𝑎 and 𝑏, it is possible to solve the equation for 

𝜌. We find, 𝜌2 = (
𝑎

2𝑥
)

2

(𝑥2 + 𝑦2 −
2𝑦

𝑎
𝑣max)

2

+ 𝑣max
2. 
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An example with numbers and times 

Let the perpendicular distance from the lifeguard station to the water be 𝑑 = 55 m 

and let the point 𝑊 be located 39 m along the water’s edge to the left of the lifeguard 

station. The runner’s speed varies from 𝑣min = 1 m/s to 𝑣max = 6 m/s. Thus, we have 

𝑎 =
1

11
 and we calculate 𝜌 = 6.02 and therefore, 𝑟 = 66.23 m.  

Thus, the least-time path is a circular arc with its centre located approximately at a 

point (−5.39, 66). 

 

 

 

 

The times taken along the circular arc and along a direct line with the same terminal 

point can be compared.  

Time along line  

The length of the chord 𝐴𝑊 is √392 + 552 ≈ 67.42 m. 

 

 

 

The time over a small element of length 𝛿𝐿 =
𝛿𝑦

sin 𝜙
 depends on its position on the line. 

And, sin 𝜙 =
39

67.42
≈ 0.5784. Since 𝛿𝑡 =

𝛿𝐿

𝑣
, we have 𝛿𝑡 =

𝛿𝑦

0.5784

𝑎(𝑑−𝑦)+𝑏
=

𝛿𝑦

0.5784

𝑣max−𝑎𝑦
≈

19.017

66−𝑦
𝛿𝑦. 

We form the differential equation 
𝑑𝑡

𝑑𝑦
=

19.017

66−𝑦
 and, since 0 ≤ 𝑦 ≤ 39, we obtain 𝑡 =

[−19.017 ln(66 − 𝑦)]0
39. Thus, the time for the journey along the line is 

approximately 17 s, with an average speed of 3.97 m/s. 
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Time along arc 

For the arc, the angle at the centre is cos−1 (1 −
552+392

2×66.232) ≈ 1.068 so that the arc 

length is approximately 70.74 m. 

For the arc, we have 𝛿𝑡 =
𝛿𝐿

𝑣
. Hence, 𝛿𝑡 =

𝑟 𝛿𝜙

𝜌 sin 𝜙
.  

 

 

and we form the equation 
𝑑𝑡

𝑑𝜙
=

11

sin 𝜙
. Integration gives 𝑡 = 11 ln (tan

𝜙

2
) + 𝐶. At 

point 𝐴, 𝑡 = 0 and we have tan 𝜙 =
66−39

55+5.39
= 0.447 and therefore 𝜙 = 0.42. 

Similarly, at point 𝑊 we have tan 𝜙 =
66

5.39
= 12.245 so that 𝜙 = 1.49.  

Thus, 𝑡 = [11 ln (tan
𝜙

2
)]

0.42

1.49

≈ 16.1 s. with an average speed of 4.4 m/s. 

As expected, the arc is a longer but quicker path than the line. 

The brachistochrone 

A question was posed by Johann Bernoulli in 1696 to the mathematicians of the day. 

Paraphrasing slightly, Bernoulli’s problem is to find the path of least time taken by a 

bead sliding without friction on a wire under gravity between two points in a vertical 

plane. 

Five mathematicians of the time are known to have provided solutions: Isaac Newton, 

Jakob Bernoulli, Gottfried Leibniz, Ehrenfried Walther von Tschirnhaus and 

Guillaume de l'Hôpital [4][5]. Newton claimed to have worked out his solution in one 

evening. 
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Johann Bernoulli saw a connection between his problem and the path of a beam of 

light refracted through a medium of variable density. We assume the problem is a 

special case of the lifeguard scenario. 

The inertia of a mass accelerating due to gravity is like the soft sand through which 

the lifeguard runs; and it seems reasonable to liken the force of gravity to the effort 

exerted by the runner.  

 

 

 

 

 

 

Bernoulli’s problem and that of the runner on the beach differ in the way the speed of 

the moving object varies and in the way the endpoint B is approached.  

Equation (2), 𝑣 = 𝜌 sin 𝜙, is assumed to hold, as it did for the lifeguard, and so do the 

equations 𝛿𝑦 = 𝑣√1 − (
𝑣

𝜌
)

2

𝛿𝑡 , 𝛿𝑥 =  
𝑣2

𝜌
𝛿𝑡 and equation (3) but the quantity 𝜌 is 

determined differently. 

An appropriate speed function 𝑣 is needed. 

Equations of motion 

In physics, one writes 𝑎 =
𝑑𝑣

𝑑𝑡
, expressing an acceleration 𝑎 as the rate of change of a 

velocity 𝑣 with respect to time 𝑡. Hence, ∫ 𝑎 𝑑𝑡 = ∫ 𝑑𝑣 and so, when 𝑎 is a constant, 

we have 

𝑣 = 𝑎𝑡 + 𝑢            (𝑀1) 

where 𝑢 is the velocity at time 𝑡 = 0. 

Similarly, 𝑣 =
𝑑𝑠

𝑑𝑡
 expresses velocity as the time rate of change of displacement 𝑠. 

Therefore, 
𝑑𝑠

𝑑𝑡
= 𝑎𝑡 + 𝑢 and on taking antiderivatives we have 

𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2       (𝑀2) 

provided 𝑠 = 0 at 𝑡 = 0. 

By making 𝑡 the subject of equation (1) and substituting this expression for 𝑡 in 

equation (2), we obtain 

𝑣2 = 𝑢2 + 2𝑎𝑠       (𝑀3). 
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A falling object is accelerating at a constant rate, −𝑔, due to the constant gravitational 

force. Its speed at a point X on the curve depends on its distance below the initial 

point A. Indeed, a consideration of the kinetic energy of the object shows that its 

speed is just the magnitude of the velocity it would have attained if falling vertically.  

According to equation (3), the speed must be 

𝑣 = √2𝑔𝑦 

where 𝑦 is the distance below point A. 

As before, we can form two equations: 𝛿𝑦 = 𝑣√1 − (
𝑣

𝜌
)

2

𝛿𝑡 and 𝛿𝑥 =  
𝑣2

𝜌
𝛿𝑡. In the 

lifeguard example we formed an expression for the derivative 
𝑑𝑦

𝑑𝑥
 from these 

equations. However, in this case the procedure is unedifying. Instead, from the 

equation for 𝛿𝑦, and with the substitution 𝑣 = √2𝑔𝑦, we form and solve  

𝑑𝑦

𝑑𝑡
= √2𝑔𝑦√1 − (

√2𝑔𝑦

𝜌
)

2

. 

Hence, 𝑡 =
𝜌

𝑔
. sin−1 √2𝑔𝑦

𝜌
, since the constant of integration is zero. 

Therefore, sin
𝑔𝑡

𝜌
=

√2𝑔𝑦

𝜌
 and so, after rearrangement, 𝑦 =

𝜌2

2𝑔
sin2 (

𝑔𝑡

𝜌
). Using a cosine 

double angle formula, we rewrite this as 

𝑦 =
𝜌2

4𝑔
(1 − cos

2𝑔𝑡

𝜌
)        (4) 

Then, from 𝛿𝑥 =  
𝑣2

𝜌
𝛿𝑡 and 𝑣 = √2𝑔𝑦, we form 

𝑑𝑥

𝑑𝑡
=

2𝑔𝑦

𝜌
, and therefore, using (4) to 

substitute for 𝑦, we have 

𝑑𝑥

𝑑𝑡
=

𝜌

2
(1 − cos

2𝑔𝑡

𝜌
) . 

This differential equation has the solution 𝑥 =
𝜌

2
(𝑡 −

𝜌

2𝑔
sin

2𝑔𝑡

𝜌
). (Again, the constant 

of integration is zero.) 

Thus, in parametric form, the least-time path is given by 

𝑥(𝑡) =
𝜌2

4𝑔
(

2𝑔𝑡

𝜌
− sin

2𝑔𝑡

𝜌
) 

𝑦(𝑡) =
𝜌2

4𝑔
(1 − cos

2𝑔𝑡

𝜌
)         (5) 

  



Cycloid 

We recognise equations (5) as those describing a cycloid, the locus of a point on a 

circle rolling on a line. The following diagram illustrates the situation. 

 

 

 

 

 

 

 

 

If the rotation angle 𝑃′𝑂′𝑄′ is 𝜃, and 𝑟 is the radius of the generating circle, then the 

distance 𝑃𝑄′ is equal to the arc length 𝑃′𝑄′ = 𝑟𝜃 and it follows that the cycloid is 

given in parametric form by 

𝑥 = 𝑟(𝜃 − sin 𝜃) 

𝑦 = 𝑟(1 − cos 𝜃) 
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