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Origin 

The book Liber abaci completed in 1202 by Leonardo of Pisa (known as Fibonacci), contains the 

challenge: Calculate how many pairs of rabbits will be produced in a year, beginning with a single 

pair, if in every month each pair bears a new pair which becomes productive from the second month 

on. (Boyer, 1989) 

The question gives rise to the Fibonacci sequence. 

𝐹𝑛 = {
1                      if 𝑛 = 1
1                      if 𝑛 = 2
𝐹𝑛−2 + 𝐹𝑛−1  if 𝑛 > 2

 

Written explicitly, the sequence is (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,… ). 

Home 

Related sequences 

Given its two-step recursion rule, the Fibonacci sequence is completely determined by the first two 

terms. A different choice of the initial terms leads to a different sequence. One such is known as the 

sequence of Lucas numbers (an example of a more general Lucas sequence), after François Édouard 

Anatole Lucas (1842–91). It is defined analogously to the Fibonacci sequence by 

𝐿𝑛 = {
2                      if 𝑛 = 1
1                      if 𝑛 = 2
𝐿𝑛−2 + 𝐿𝑛−1  if 𝑛 > 2

 

 

with the explicit representation (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199,… ). 

Many sequences of this kind are possible. However, since each of them is determined by its initial 

two terms they can all be considered as linear combinations of an independent pair of such 

sequences. For example, in the vector space of integer sequences with the same recursive rule that 

produces the Fibonacci and Lucas numbers, the sequences (𝑠𝑛) = (1, 0, 1,1… ) and (𝑡𝑛) =

(0, 1, 1,2, … ) form a basis because any pair of initial terms (𝑎, 𝑏) can be expressed as a linear 

combination of the initial terms (1,0) and (0,1). Thus, 

𝐹𝑛 = 𝑠𝑛 + 𝑡𝑛 

and 

𝐿𝑛 = 2𝑠𝑛 + 𝑡𝑛 . 

We might consider sequences generated from their first two terms but with a different recursion 

rule. That is, 𝑎𝑛+1 = 𝐴𝑎𝑛 +𝐵𝑎𝑛−1 given constants 𝐴 and 𝐵 and particular values of the terms 𝑎1 

and 𝑎2. Again, sequences beginning (1,0, … ) and (0,1, … ) form a basis for the space of sequences 

that are defined by a choice of recursion rule. 

Home 

Lucas sequences 

There is a notation that indicates both a recursion rule and a standard set of initial terms that 

produce a basis pair of sequences. The notation gives Lucas sequences of the first and second kind, 

𝑈(𝑃, 𝑄) and 𝑉(𝑃, 𝑄) respectively. 

The recurrence relation is assumed to be 𝑥𝑛 = 𝑃𝑥𝑛−1 −𝑄𝑥𝑛−2, with 𝑛 ∈ {0, 1, 2, … }. Then, 𝑈(𝑃, 𝑄) 

is defined by 
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𝑈𝑛(𝑃, 𝑄) = {
0                                       𝑛 = 0
1                                       𝑛 = 1
𝑃 ∙ 𝑈𝑛−1 − 𝑄 ∙ 𝑈𝑛−2     𝑛 > 1

 

and 𝑉(𝑃, 𝑄) is defined by  

𝑉𝑛(𝑃, 𝑄) = {
2                                       𝑛 = 0
𝑃                                       𝑛 = 1
𝑃 ∙ 𝑉𝑛−1 −𝑄 ∙ 𝑉𝑛−2      𝑛 > 1

 

The sequence 𝑈𝑛(1, −1) is the Fibonacci sequence, and the sequence 𝑉𝑛(1, −1) corresponds to the 

Lucas numbers. 

Properties of the Fibonacci sequence often follow from properties observed in this more general 

setting.  

Another generalisation of the Fibonacci-type sequence is obtained by making the recursive 

definition depend on three or more successive terms rather than two. For example, with three 

terms, 

𝑇𝑛 = {

𝑎                                     if 𝑛 = 1
𝑏                                     if 𝑛 = 2
𝑐                                     if 𝑛 = 3
𝑇𝑛−3 + 𝑇𝑛−2 + 𝑇𝑛−1  if 𝑛 > 3

 

 

If 𝑎 = 𝑏 = 0 and 𝑐 = 1 the sequence is: (0, 0, 1, 1, 2, 4, 7, 13, 24, 44,… ). Three-step sequences of 

this kind are called tribonacci sequences. 

The family of three-step sequences is generated as linear combinations of sets of three basis 

sequences, for example (0, 0, 1, … ), (0, 1, 0, … ) and (1, 0, 0, … ). 

Home 

Some identities 

Given the Fibonacci sequence (𝐹𝑛), we have by definition, 

𝐹𝑛+1 = 𝐹𝑛−1 + 𝐹𝑛  

and then 

𝐹𝑛+2 = 𝐹𝑛 + 𝐹𝑛+1 = 𝐹𝑛−1 + 2𝐹𝑛 

Adding these equations gives  

𝐹𝑛+3 = 3𝐹𝑛 + 2𝐹𝑛−1 = 𝐹4𝐹𝑛 + 𝐹3𝐹𝑛−1 

which suggests that by adding successive pairs of equations, we should obtain  

(1)          𝐹𝑛+𝑘 = 𝐹𝑘+1𝐹𝑛 + 𝐹𝑘𝐹𝑛−1 

This is proved inductively by assuming that the statements for 𝐹𝑛+𝑘 and 𝐹𝑛+𝑘−1 are true.  

Setting 𝑘 = 𝑛 gives  

(2)          𝐹2𝑛 = 𝐹𝑛(𝐹𝑛+1 + 𝐹𝑛−1) 

Setting 𝑘 = 𝑛 − 1 in (1) gives 

(3)          𝐹2𝑛−1 = 𝐹𝑛
2 + 𝐹𝑛−1

2 

Setting 𝑘 = 𝑛 + 1 in (1) gives 

(4)          𝐹2𝑛+1 = 𝐹𝑛+2𝐹𝑛 + 𝐹𝑛+1𝐹𝑛−1 
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By manipulating (4) or by induction 

(5)          𝐹2𝑛+1 = 𝐹𝑛+2𝐹𝑛+1 − 𝐹𝑛𝐹𝑛−1 

(6)          𝐹𝑛+2𝐹𝑛 − 𝐹𝑛+1
2 = (−1)𝑛+1 

Identity (6) was discovered in 1680 by Giovanni Cassini.  To verify (6), consider a two-step recursive 

process 𝑎𝑛+1 = 𝑎𝑛 + 𝑎𝑛−1.  

Let 𝑁𝑘 = 𝑎𝑘+1𝑎𝑘−1 − 𝑎𝑘
2. Then, using 𝑎𝑘−1 = 𝑎𝑘+1 − 𝑎𝑘, we have 

𝑁𝑘 = 𝑎𝑘+1(𝑎𝑘+1 − 𝑎𝑘) − 𝑎𝑘
2 

= 𝑎𝑘+1
2 − 𝑎𝑘(𝑎𝑘+1 + 𝑎𝑘) 

= −(𝑎𝑘+2𝑎𝑘 − 𝑎𝑘+1
2) 

= −𝑁𝑘+1 

In the case of the Fibonacci numbers, observe that when 𝑘 = 2, 𝑁 = 𝐹3𝐹1 − 𝐹2
2 = 1, and when 𝑘 =

3, 𝑁 = −1. Formula (6) follows by induction. 

Another proof (Knuth, 1997) uses a matrix. Consider powers of the matrix 𝐴 = (
1 1
1 0

). 

𝐴2 = (
2 1
1 1

) , 𝐴3 = (
3 2
2 1

) ,… and, 𝐴𝑛 = (
𝐹𝑛+1 𝐹𝑛
𝐹𝑛 𝐹𝑛−1

). Taking the determinants of (
1 1
1 0

)
𝑛

 and 

(
𝐹𝑛+1 𝐹𝑛
𝐹𝑛 𝐹𝑛−1

), we have (−1)𝑛 = 𝐹𝑛+1𝐹𝑛−1 − 𝐹𝑛
2. 

An extension of Cassini’s identity, discovered in 1879 by Eugène Charles Catalan, says: 

(7)        𝐹𝑛
2 − 𝐹𝑛+𝑘𝐹𝑛−𝑘 = (−1)

𝑛−𝑘𝐹𝑘
2. 

Given a more general sequence (𝑆𝑛) defined by 𝑆𝑛 = {
1                          if 𝑛 = 1
𝑞                          if 𝑛 = 2
𝑞𝑆𝑛−1 + 𝑆𝑛−2   if 𝑛 > 2

,  we show by 

induction that 

(8)        S𝑘+1𝑆𝑛−𝑘 + 𝑆𝑘𝑆𝑛−(𝑘+1) = 𝑆𝑛 for 𝑘 ∈ {1, 2, … , 𝑛 − 2} 

To begin, when 𝑘 = 1, and 𝑛 > 2, we have S2𝑆𝑛−1 + 𝑆1𝑆𝑛−2 = 𝑞𝑆𝑛−1 + 𝑆𝑛−2 = 𝑆𝑛 . Suppose the 

statement is true for some arbitrary 𝑘 ∈ {1, 2, … , 𝑟 − 2}. Then, 

𝑆𝑛 = S𝑘+1𝑆𝑛−𝑘 + 𝑆𝑘𝑆𝑛−(𝑘+1) 

= S𝑘+1(𝑞𝑆𝑛−(𝑘+1) + 𝑆𝑛−(𝑘+2)) + 𝑆𝑘𝑆𝑛−(𝑘+1) 

= 𝑞S𝑘+1𝑆𝑛−(𝑘+1) + S𝑘+1𝑆𝑛−(𝑘+2) + 𝑆𝑘𝑆𝑛−(𝑘+1) 

= 𝑆𝑛−(𝑘+1)(𝑞S𝑘+1 + 𝑆𝑘) + S𝑘+1𝑆𝑛−(𝑘+2) 

= S𝑘+2𝑆𝑛−(𝑘+1) + S𝑘+1𝑆𝑛−(𝑘+2). 

That is, the statement remains true when 𝑘 + 1 is replaced by 𝑘 + 2, and the conclusion follows. 

When 𝑛 = 2𝑟 and 𝑘 = 𝑟, we have 𝑆2𝑟 = S𝑟+1𝑆𝑟 + 𝑆𝑟𝑆𝑟−1, which is equivalent to (2) in the Fibonacci 

case, 𝑞 = 1. 

When 𝑛 = 2𝑟 − 1 and 𝑘 = 𝑟 − 1, we have 𝑆2𝑟−1 = 𝑆𝑟
2 + 𝑆𝑟−1

2, which reduces to (3) when 𝑞 = 1. 

Cassini’s identity appears as det (
𝑞 1
1 0

)
𝑛

= det (
𝑆𝑛+1 𝑆𝑛
𝑆𝑛 𝑆𝑛−1

), so that (−1)𝑛 = 𝑆𝑛+1𝑆𝑛−1 − 𝑆𝑛
2. 

https://en.wikipedia.org/wiki/Eug%C3%A8ne_Charles_Catalan
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(9)        𝜑𝑛 = 𝜑𝐹𝑛 + 𝐹𝑛−1, 𝑛 ≥ 2, where 𝜑 =
1+√5

2
. (See below for the significance of 𝜑.) 

This is proved by induction using the fact that 𝜑2 = 𝜑 + 1. The statement is clearly true when 𝑛 = 2 

since the statement 𝜑2 = 𝜑𝐹2 + 𝐹1 is just 𝜑2 = 𝜑 + 1. If it is true for some 𝑘, then on multiplying 

both sides by 𝜑 we have 𝜑𝑘+1 = 𝜑2𝐹𝑘 + 𝐹𝑘−1 = (1 + 𝜑)𝐹𝑘 + 𝐹𝑘−1 = 𝜑𝐹𝑘 + 𝐹𝑘+1, which is the 

inductive step. 

A more direct explanation for this identity is given below.  

Home 

 

Ratios of successive terms 

Ratios of successive terms of the Fibonacci sequence form a sequence: 

(
𝐹𝑘+1
𝐹𝑘

)
𝑘=1

∞

= (1, 2,
3

2
,
5

3
,
8

5
, … ). 

This is an alternating sequence with the odd numbered terms forming an increasing subsequence 

and the even numbered terms forming a decreasing subsequence.  

The difference between successive terms of the ratio sequence is given by 
𝐹𝑘+1

𝐹𝑘
−

𝐹𝑘

𝐹𝑘−1
=

𝐹𝑘+1𝐹𝑘−1−𝐹𝑘
2

𝐹𝑘𝐹𝑘−1
. According to identity (6) above, this expression is equal to 

(−1)𝑘−1

𝐹𝑘𝐹𝑘−1
 which approaches 0 

as 𝑘 → ∞. Therefore, the sequence of ratios converges.  The limit, usually notated 𝜑, is found by 

setting 

𝜑 = lim
𝑘→∞.

𝐹𝑘+1
𝐹𝑘

 

= lim
𝑘→∞.

𝐹𝑘−1 + 𝐹𝑘
𝐹𝑘

 

= lim
𝑘→∞.

𝐹𝑘−1
𝐹𝑘

+ 1 

=
1

𝜑
+ 1 

Therefore, 𝜑2 −𝜑 − 1 = 0, with positive solution 𝜑 =
1+√5

2
.  

More generally, in any sequence generated by 𝑎𝑛+1 = 𝑎𝑛 + 𝑎𝑛−1, whatever the initial terms, the 

sequence of ratios of successive terms is shown to converge (by the same reasoning as was used in 

the Fibonacci case) and the limit is the same number, 𝜑. 

If the recursion is 𝑎𝑛+1 = 𝐴𝑎𝑛 + 𝐵𝑎𝑛−1, we find (assuming it exists) the limit  

𝜆 = lim
𝑘→∞.

𝑎𝑘+1
𝑎𝑘

= lim
𝑘→∞.

𝐴𝑎𝑘−1 +𝐵𝑎𝑘
𝑎𝑘

=
𝐴

𝜆
+ 𝐵 

Then, on solving 𝜆2 −𝐵𝜆 − 𝐴 = 0, we obtain the positive root 𝜆 =
1

2
(𝐵 + √𝐵2 + 4𝐴). 

Home 



6 
 

Phi 𝝋 

As well as being the limit of the sequence of Fibonacci ratios, the number 
1+√5

2
 is known as the 

‘golden ratio’, the ‘golden section’, the ‘divine proportion’, and more recently, ‘phi’. Rectangles with 

sides in this proportion are considered by artists and architects to be aesthetically pleasing. 

 

 

 

 

In the diagram above, the larger rectangle is divided so that the smaller rectangle is similar to it. That 

is,  
𝜑

1
=

𝜑+1

𝜑
.  

According to Theodore Andrea Cook (Wikipedia), engineer Mark Barr (1871-1950) gave the golden 

ratio, the number 
1+√5

2
, the name phi (𝜑). Cook wrote that Barr chose 𝜑 by analogy to the use 

of 𝜋 for the ratio of a circle's circumference to its diameter and because it is the first letter in the 

name of the ancient Greek sculptor Phidias.  

Home 

A two-step sequence built from 𝜑 

The fact that successive terms of the Fibonacci sequence approach a constant ratio means the 

Fibonacci sequence approaches a geometric sequence.  

Consider a recurrence relation given by 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 with initial terms 1 and 𝜑. The resulting 

sequence is (𝑓𝑛) = (1, 𝜑, 1 + 𝜑, 1 + 2𝜑, 2 + 3𝜑, 3 + 5𝜑,… ) with general term 𝑓𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1𝜑. 

Since 𝜑2 −𝜑 − 1 = 0, we have the terms 

1 + 𝜑 = 𝜑2 

Then, 

1 + 2𝜑 = 𝜑2 +𝜑 = 𝜑(1 + 𝜑) = 𝜑3 

and then 

2 + 3𝜑 = (1 + 𝜑) + (1 + 2𝜑) = 𝜑2 +𝜑3 = 𝜑2(1 + 𝜑) = 𝜑4 

Continuing in this way we conclude that the sequence (𝑓𝑛) is also the geometric sequence 

(1, 𝜑, 𝜑2, 𝜑3 …𝜑𝑛) with terms 𝑓𝑛 = 𝜑
𝑛−1.  

Identity (9) above follows from this discussion. 

Using the standard geometric sum formula, we find  ∑ 𝑓𝑛
𝑘
𝑛=1 = 𝜑𝑘+1 −  𝜑.  

Home 

 

  

𝜑 

1 𝜑 



7 
 

Further appearances of 𝜑 

The number 𝜑 occurs in contexts other than the Fibonacci sequence whenever the quadratic 

equation 𝑥2 − 𝑥 − 1 = 0 appears. In an example from the geometry of the regular pentagon, we 

obtain the exact value cos
𝜋

5
=

1+√5

4
, via the emergence of 𝜑. 

 

 

 

 

 

 

 

 

Let 𝑥 be the length of the diagonal 𝐵𝐸 on the regular unit pentagon 𝐴𝐵𝐶𝐷𝐸. By the cosine rule on 

triangle 𝐴𝐵𝐸 we have 1 = 1 + 𝑥2 − 2𝑥 cos
𝜋

5
 and thus 𝑥 = 2 cos

𝜋

5
.  

Since 𝐵𝐸 is parallel to 𝐶𝐷 and 𝐴𝐷 is parallel to 𝐷𝐸 then 𝐶𝐷𝐸𝐹 is a unit rhombus. Thus, by symmetry 

𝐴𝐹 = 𝐵𝐹 and we have Δ𝐴𝐵𝐸~Δ𝐵𝐴𝐹. In particular, 
𝑥

1
=

1

𝑥−1
. This simplifies to 𝑥2 − 𝑥 − 1 = 0 so 

that 𝑥 = 𝜑.  Then, from 𝜑 = 2 cos
𝜋

5
, we deduce cos

𝜋

5
=

1+√5

4
. 

Home 

Explicit formulas for Fibonacci terms 

Approximations 

The Fibonacci sequence is not a geometric sequence but since the ratio between its successive terms 

approaches a constant, it is possible to imagine a geometric sequence whose terms are close to the 

corresponding terms of the Fibonacci sequence for terms far enough along the sequence. Thus, one 

idea would be to set 𝑔𝑛 = 𝑎𝜑
𝑛−1 ≈ 𝐹𝑛, and look for a suitable initial term 𝑎 of the geometric 

sequence (𝑔𝑛). (Another possibility is to set ℎ𝑛+1 = 𝑏𝜑
𝑛 ≈ 𝐹𝑛 so that 𝑏 =

𝐹𝑛

𝜑𝑛
 is close to 

1

√5
). 

In the case of (𝑔𝑛), 𝑎 ≈
𝐹𝑛

𝜑𝑛−1
. Then, candidate values of 𝑎, starting from 𝑛 = 5, are (to a few decimal 

places) 0.729, 0.721, 0.724, 0.723, 0.7237, … and for 𝑛 ≥ 12, 𝑎 ≈ 0.7236. Thus, 

𝐹𝑛 ≈ 𝑔𝑛 = 0.7236𝜑
𝑛−1 

The actual value of 𝐹𝑛 is the nearest integer to the value of 𝑔𝑛  given by this formula. 

Home 

Exact formula 

A precise formula for terms of a sequence arising from a recurrence relation 𝑎𝑛+2 = 𝐴𝑎𝑛+1 +𝐵𝑎𝑛 

begins from the assumption that there exists a number 𝛼 such that 𝑎𝑛 = 𝛼
𝑛 for all positive integers 

𝑛. Then, 𝛼 satisfies 𝛼2 = 𝐴𝛼 + 𝐵. In the case of the Fibonacci sequence, 𝐴 = 𝐵 = 1 so that the 

quadratic equation to be solved is 𝑥2 − 𝑥 − 1 = 0. (This is called the characteristic equation.) 

𝐴 

1 1 

𝑥 

𝜋

5
 

𝐵 

𝐶 𝐷 

𝐸 
𝐹 

1 

1 

1 
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There are two solutions, 𝑥 =
1+√5

2
 and 𝑥 =

1−√5

2
. These are often written 𝜑+ and 𝜑− respectively. It 

can be shown (Anderson, 1989) that any linear combination of the solutions must also satisfy the 

recurrence relation. Thus, the set of all possible solutions is expressed by 𝐹𝑛 = 𝐾1(𝜑
+)𝑛 + 𝐾2(𝜑

−)𝑛 

with 𝐾1 and 𝐾2 being determined by the initial terms of the recurrence relation. In this case, 

𝐹1 = 1 = 𝐾1𝜑
+ + 𝐾2𝜑

− and  

𝐹2 = 1 = 𝐾1(𝜑
+)2 + 𝐾2(𝜑

−)2  

After multiplying the first of these equations by 𝜑+, and making use of the fact that  𝜑+𝜑− = −1, 

we have 𝜑+ = 𝐾1(𝜑
+)2 −𝐾2. Then, 

1 − 𝜑+ = 𝐾2((𝜑
−)2 + 1) and therefore, 𝐾2 =

1−𝜑+

(𝜑−)2+1
= −

1

√5
. Then, 𝐾1 =

𝜑+−
1

√5

(𝜑+)2
=

1

√5
.  

Hence, 

𝐹𝑛 =
1

√5
[(
1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛

] 

Since √5 =
1+√5

2
−
1−√5

2
 we can write 𝐹𝑛 =

(𝜑+)𝑛−(𝜑−)𝑛

𝜑+−𝜑−
. More generally, if 𝛼 and 𝛽 are respectively 

the positive and negative roots of a characteristic equation belonging to a Lucas sequence (𝑆𝑛), then 

𝑆𝑛 =
𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
. 

This is known as Binet’s formula. 

Observe that when 𝑛 is large, (
1−√5

2
)
𝑛

→ 0 so that 𝐹𝑛 approaches the approximation 
1

√5
(
1+√5

2
)
𝑛

 

mentioned above. 

Another representation arises from the fact that 𝜑− = −
1

𝜑+
, so that 

𝐹𝑛 =

{
 

 
1

√5
(𝜙𝑛 −

1

𝜙𝑛
) ,   𝑛 even

1

√5
(𝜙𝑛 +

1

𝜙𝑛
) ,   𝑛 odd

 

Home 

N-step sequences 

Tribonacci 

The sequence of ratios of successive terms in the three-step sequence 

(𝑇𝑛) = (0, 0, 1, 1, 2, 4, 7, 13, 24, 44,… ) 

also seems to converge to a limit. Assuming the limit exists, we write 

𝜏 = lim
𝑘→∞.

𝑇𝑘+1
𝑇𝑘

 

= lim
𝑘→∞.

𝑇𝑘 + 𝑇𝑘−1 + 𝑇𝑘−2
𝑇𝑘

 

= 1+ lim
𝑘→∞.

(
𝑇𝑘−1
𝑇𝑘

+
𝑇𝑘−2
𝑇𝑘

∙
𝑇𝑘−1
𝑇𝑘−1

) 

= 1+
1

𝜏
(1 +

1

𝜏
). 
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Therefore, the limiting ratio 𝜏 satisfies the cubic equation 𝑥3 − 𝑥2 − 𝑥 − 1 = 0. 

Tetrabonacci 

In a similar way, a four-step recursion leads to the sequence  

(Τ𝑛) = (0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56,… ) 

Again, the ratios 
Τ𝑛+1

Τ𝑛
 appear to tend to a limiting value. By an argument similar to the three-step 

case, this can be shown to satisfy the fourth-degree polynomial equation  

𝑥4 − 𝑥3 − 𝑥2 − 𝑥 − 1 = 0 

N-bonacci 

The idea extends to an n-step recursion after the model of the Fibonacci sequence. The ratios of 

successive terms tend to a limit satisfying 𝑥𝑛 − 𝑥𝑛−1 −⋯− 𝑥2 − 𝑥 − 1 = 0. 

Home 

Ratio limits―another expression 

Suppose 𝑥 = 𝛼 satisfies 𝑥𝑛 − 𝑥𝑛−1 −⋯− 𝑥2 − 𝑥 − 1 = 0. We show that 𝛼 also satisfies a more 

concise equation that leads to further results. Note that 𝛼 is a positive real number, greater than 1. 

The equation 𝛼𝑛 − 𝛼𝑛−1 −⋯− 𝛼2 − 𝛼 − 1 = 0 can be rewritten 

𝛼𝑛 − (𝛼𝑛−1 +⋯+ 𝛼2 + 𝛼 + 1) = 0 

Then,  

𝛼𝑛 −
(𝛼 − 1)(𝛼𝑛−1 +⋯+ 𝛼2 + 𝛼 + 1)

𝛼 − 1
= 0 

𝛼𝑛(𝛼 − 1) − (𝛼 − 1)(𝛼𝑛−1 +⋯+ 𝛼2 + 𝛼 + 1)

𝛼 − 1
= 0 

𝛼𝑛+1 − 𝛼𝑛 − (𝛼𝑛 − 1)

𝛼 − 1
= 0 

1

𝛼 − 1
(𝛼𝑛+1 − 2𝛼𝑛 + 1) = 0 

Now, 
1

𝛼−1
≠ 0. Therefore, 

𝛼𝑛+1 − 2𝛼𝑛 + 1 = 0 

𝛼𝑛(𝛼 − 2) + 1 = 0 

𝛼 +
1

𝛼𝑛
= 2 

Hence, 𝛼 satisfies the equation 𝑥 +
1

𝑥𝑛
= 2. 

It follows that 𝛼 = 2 −
1

𝛼𝑛
 is less than 2, and 𝛼 approaches 2 as 𝑛 → ∞. 

As an historical note, Stephen Barr, whose father Mark Barr gave phi its name, sent Martin Gardner 

(Gardner, 1981) a clipping of an article by his father Mark Barr (from the London Sketch circa. 1913) 

in which he stated that 𝛼 and 𝑛 were related by the equation 

𝑛 =
log(2 − 𝛼)−1

log 𝛼
 

Rearrangement of this equation gives 
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𝛼𝑛+1 − 2𝛼𝑛 + 1 = 0 

consistent with the result given above. 

Home 

Fibonacci divisors of Fibonacci numbers 

𝐹𝑛 divides 𝐹𝑚𝑛 for all 𝑚 ≥ 2 

Proof 

From identity (2), 𝐹2𝑛 = 𝐹𝑛(𝐹𝑛+1 + 𝐹𝑛−1), it is clear that 𝐹𝑛 divides 𝐹2𝑛. If it is true that 𝐹𝑛|𝐹𝑘𝑛 for 

some 𝑘, then 𝐹(𝑘+1)𝑛 = 𝐹𝑘𝑛+𝑛 and by identity (1) this is 𝐹𝑛+1𝐹𝑘𝑛 + 𝐹𝑛𝐹𝑘𝑛−1so that 𝐹𝑛|𝐹(𝑘+1)𝑛. 

Then, since 𝐹𝑛|𝐹𝑘𝑛 when 𝑘 = 2, the conclusion follows by induction. 

Sequences with this property are called divisibility sequences. 

Greatest common divisor  

For positive integers 𝑚 and 𝑛 with greatest common divisor (𝑚, 𝑛), the greatest common divisor of 

Fibonacci numbers 𝐹𝑚  and 𝐹𝑛 is 𝐹(𝑚,𝑛). 

Proof 

The procedure is essentially the Euclidean algorithm for the greatest common divisor of two 

numbers. We make use of identity (1), 𝐹𝑛+𝑘 = 𝐹𝑘+1𝐹𝑛 + 𝐹𝑘𝐹𝑛−1. 

If 𝑚 > 𝑛 we can write 𝑚 = 𝑛 + 𝑘. Any divisor of 𝑚 and 𝑛 is a divisor of 𝑘. And, any common divisor 

of 𝐹𝑚  and 𝐹𝑛 divides 𝐹𝑚 = 𝐹𝑛+𝑘 = 𝐹𝑘+1𝐹𝑛 + 𝐹𝑘𝐹𝑛−1. Such a divisor does not divide 𝐹𝑛−1 and 

therefore must divide 𝐹𝑘, which is less than 𝐹𝑚. 

Thus, (𝐹𝑚 , 𝐹𝑛) = (𝐹𝑘 , 𝐹𝑛). If 𝑘 = 𝑛 then (𝐹𝑚 , 𝐹𝑛) = 𝐹𝑛. Otherwise, 𝑘 ≠ 𝑛 and the reduction process 

can be repeated in a similar way. For example, if 𝑘 > 𝑛, we have 𝑘 = 𝑛 + 𝑠 and any divisor of 𝑛 and 

𝑘 also divides 𝑠. It follows, as before, that (𝐹𝑘 , 𝐹𝑛) = (𝐹𝑠 , 𝐹𝑛), 𝑠 < 𝑘.  Eventually, either a subscript 1 

is reached or the two subscripts are equal, and the process terminates. Either 

(𝐹𝑚 , 𝐹𝑛) = (𝐹𝑘 , 𝐹𝑛) = ⋯ = (𝐹1, 𝐹𝑟) = 1 or 

(𝐹𝑚 , 𝐹𝑛) = (𝐹𝑘 , 𝐹𝑛) = ⋯ = (𝐹𝑟, 𝐹𝑟) = 𝐹𝑟. 

The Euclidean procedure applied to the subscripts alone leads to the greatest common divisor of 𝑚 

and 𝑛. Therefore, both (𝐹𝑚 , 𝐹𝑛) = 𝐹𝑟 and (𝑚, 𝑛) = 𝑟 . Hence, (𝐹𝑚 , 𝐹𝑛) = 𝐹(𝑚,𝑛). 

Sequences with this property are called strong divisibility sequences. 

Home 

Integer divisors of Fibonacci numbers 

Insights from modular arithmetic 

Every third Fibonacci number is even: the others are odd. The sequence expressed in modulo 2 is, 

(1, 1, 0, 1, 1, 0, … ). 

Similarly, every fourth Fibonacci number is divisible by 3, since in mod 3 we have the 8-digit 

repeating pattern (1, 1, 2, 0, 2, 2, 1, 0, … ).  

However, every sixth Fibonacci number is divisible by 4 and every fifth Fibonacci number is divisible 

by 5. 
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Pisano period 

It is observed that the pattern of successive terms modulo 𝑛 repeats. The length of the repeating 

pattern for each modulus is called its Pisano period. (Fibonacci was known as Pisano after his 

hometown, Pisa.) 

In fact, in modulo 𝑛, the sequence of terms must repeat because in a finite string of symbols, some 

ordered pair of them must recur eventually and then the pattern begins again due to the recurrence 

rule. Given 𝑛 symbols, there are 𝑛2 cyclically ordered pairs, but the pair (0, 0) must be excluded and 

some other pairs may fail to appear. Thus, the sequence of symbols repeats after at most 𝑛2 − 1 

terms.  

In modulo 5, for example, the Fibonacci sequence is 

(1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, … ) 

and its Pisano period is 20. Observe that the ordered pair (2, 1) does not appear. If the recursion 

rule is applied to this absent pair, we generate the length 4 repeating pattern: 

(2, 1, 3, 4, … )(mod 5) 

and it includes the four ordered pairs missing from the 𝑛2 − 1 estimate. 

In modulo 10, the sequence includes all ten digits and must have a Pisano period of at most  

𝑛2 − 1 = 99. Ordered pairs belonging to strings containing the even digits exclusively do not occur. 

These are: (2, 2, 4, 6, 0, 6, 6, 2, 8, 0, 8, 8, 6, 4, 0, 4, 4, 8, 2, 0) with length 20, and (2, 6, 8, 4) with length 

4. Also, the ordered pairs from the strings (5, 5, 0) of length 3 and (1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7), 

length 12, are not found. Thus, in mod 10, the Pisano period is 60. 

For every 𝑛 there is a corresponding Pisano period 𝜋(𝑛). In each case the repeating string begins 

with (1, 1, … )and, hence, must include (… , 1, 0, 1, 1, … )(mod 𝑛). Therefore, for each 𝑛 there exists 

an 𝐹𝑛 with 𝑛 as a factor. In particular, every prime divides some Fibonacci number. 

 Home 

Successive terms are coprime 

In a two-step Fibonacci-type sequence, no term has a prime factor in common with its predecessor. 

Suppose terms 𝐹𝑘 and 𝐹𝑘+1 do have a common prime factor for some value of 𝑘. Then, the 

preceding term 𝐹𝑘−1 = 𝐹𝑘+1 − 𝐹𝑘 must also have this factor. Similarly, each of the preceding terms 

down to 𝐹4 = 3 and 𝐹3 = 2 must share the factor. Since this assertion is false, it follows that 𝐹𝑘 and 

𝐹𝑘+1 could not have had a common prime factor and, therefore, successive pairs of terms must be 

coprime. 

Moreover, terms 𝐹𝑘 and 𝐹𝑘+2 are coprime. Otherwise, 𝐹𝑘+1 = 𝐹𝑘+2 − 𝐹𝑘 would have a factor in 

common with both 𝐹𝑘 and 𝐹𝑘+2. 

Similarly, every three successive terms in the sequences (𝑠𝑛) = (1, 0, 1, 1, … ) and  

(𝑡𝑛) = (0, 1, 1, 2, … ) are pairwise coprime as these sequences are the same as the Fibonacci 

sequence but with shifted starting points. (That is, 𝑠𝑘+2 = 𝐹𝑘 and 𝑡𝑘+1 = 𝐹𝑘) Linear combinations 

(𝑟𝑛) = 𝑎(𝑠𝑛) + 𝑏(𝑡𝑛) have the same property provided 𝑎 and 𝑏 are coprime.  

Home 

  



12 
 

Powers of 2 and 3 

The greatest power of 2 that can occur as a Fibonacci number is 23 = 8. For, if there exists 𝐹𝑘 =

2𝑖 , 𝑖 > 3, it is divisible by 1 = 𝐹2 and 2 = 𝐹3. The index 𝑘 > 3 of the Fibonacci number 𝐹𝑘 contains 

the factors 2 and 3 and no other distinct prime factors. If 𝑘 has a second factor 2, then it has 4 as a 

factor and 𝐹𝑘 is divisible by 𝐹4 = 3 which is impossible. Similarly, if 𝑘 has the factor 3 repeated, then 

it has 9 as a factor and 𝐹𝑘 is divisible by 𝐹9 = 34 which is also impossible. 

If there exists 𝐹𝑘 = 3
𝑖 , 𝑖 > 1, then 𝐹𝑘 is divisible by 1 = 𝐹2 and 3 = 𝐹4. The index 𝑘 can have no 

prime factor other than 2. The prime factor 2 occurs twice in the index of 𝐹4. If it should occur more 

than twice, then the index 𝑘 must be divisible by 8. This is impossible because 𝐹8 = 21, which has a 

divisor 7 that does not divide any power of 3. 

 

Primes of form 4𝑘 + 1 

In a study of Gardner triples (Turner & Staples 2019) it is shown that a Fibonacci number 𝐹2𝑛−1 can 

only be 1, a prime of the form 4𝑘 + 1, a product of such primes or twice any of these quantities. 

For certain integer values of 𝑎, 𝑏, 𝑐, 𝑡 in the following diagram, it happens that the angles 𝛼, 𝛽, 𝛾 are 

such that 𝛼 =  𝛽 + 𝛾. 

 

 

 

 

That is, tan−1
𝑡

𝑎
=  tan−1

𝑡

𝑏
+ tan−1

𝑡

𝑐
 . Hence, 

𝑡

𝑎
=

𝑡

𝑏
+
𝑡

𝑐

1−
𝑡2

𝑏𝑐

. On rearrangement, we find 𝑐 = 𝑎 +
𝑎2+𝑡2

𝑏−𝑎
, 

which can only be an integer if 𝑏 − 𝑎 divides the sum of squares 𝑎2 + 𝑡2. This occurs only if the 

difference 𝑏 − 𝑎 is 1 or a prime of the form 4𝑘 + 1 or a product of such primes or twice any of these 

quantities. 

The condition 𝑐 = 𝑎 +
𝑎2+𝑡2

𝑏−𝑎
 is satisfied by 

tan−1
1

𝐹2𝑛
= tan−1

1

𝐹2𝑛+1
+ tan−1

1

𝐹2𝑛+2
 

Then, the result follows from the observation that the difference 𝑏 − 𝑎 is 𝐹2𝑛+1 − 𝐹2𝑛 = 𝐹2𝑛−1. 

Proof 

From the Cassini identity (6)  𝐹𝑛+2𝐹𝑛 − 𝐹𝑛+1
2 = (−1)𝑛+1, we have 𝐹2𝑛+1𝐹2𝑛−1 − 𝐹2𝑛

2 = 1. Then 

𝐹2𝑛+1𝐹2𝑛−1 = 𝐹2𝑛
2 + 1 

𝑡 

𝑎 𝑏 𝑐 
𝛼 𝛽 𝛾 
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𝐹2𝑛+1 =
𝐹2𝑛

2 + 1

𝐹2𝑛−1
 

𝐹2𝑛+2 − 𝐹2𝑛 =
𝐹2𝑛

2 + 1

𝐹2𝑛−1
 

𝐹2𝑛+2 = 𝐹2𝑛 +
𝐹2𝑛

2 + 1

𝐹2𝑛−1
 

and this corresponds with the form 𝑐 = 𝑎 +
𝑎2+𝑡2

𝑏−𝑎
 as required. 

 

Primitives 

A prime factor that has not occurred in any smaller number in the sequence is called a primitive.  

R. D. Carmichael (Carmichael 1913) showed that except for 𝐹1, 𝐹2, 𝐹6 and 𝐹12, every Fibonacci 

number contains a primitive. 

Home 

Partial sums 

From the Fibonacci sequence (𝐹𝑛) = (1, 1, 2, 3, 5, … ), we have the sequence of partial sums  

(𝑆𝑛) = (1, 2, 4, 7, 12,… ). By inspection, it appears that 𝑆𝑛 = 𝐹𝑛+2 − 1. 

Proof 

Assume the statement that 𝑆𝑘 = 𝐹𝑘+2 − 1 is true for some index 𝑘. Then we have the inductive step 

𝑆𝑘+1 = 𝑆𝑘 + 𝐹𝑘+1 = 𝐹𝑘+2 − 1+ 𝐹𝑘+1 = 𝐹𝑘+3 − 1. Therefore, since it is true for 𝑘 = 1, it must be 

true for all 𝑛 ∈ ℤ+. 

A general statement of a similar kind can be made in the case of two-step sequences with the same 

recurrence rule but different initial terms. In particular, consider the sequence 

(𝑡𝑛) = (𝑎, 𝑏, 𝑎 + 𝑏, 𝑎 + 2𝑏, 2𝑎 + 3𝑏,… ) 

with the general term 𝑡𝑛 = 𝐹𝑛−2𝑎 + 𝐹𝑛−1𝑏. 

The corresponding sequence of partial sums, 

(𝑠𝑛) = (𝑎, 𝑎 + 𝑏, 2𝑎 + 2𝑏, 3𝑎 + 4𝑏, 5𝑎 + 7𝑏,… ) 

has the general term 𝑠𝑛 = 𝐹𝑛𝑎 + (𝐹𝑛+1 − 1)𝑏. This reduces to the previous result when 𝑎 = 𝑏 = 1. 

Steve Thornton describes (Turner & Thornton 2017) a classroom exercise in which a student is asked 

to choose a pair of seed numbers and then to generate on a whiteboard the first ten terms of the 

sequence arising from the recurrence relation 𝑎𝑛+2 = 𝑎𝑛 + 𝑎𝑛+1. Other members of the class 

calculate the cumulative sum progressively. Mysteriously and unerringly, the teacher announces the 

sum of all ten terms of the sequence when only seven have been written down. The trick, which 

needs to be explained, lies in the fact that the tenth partial sum is always eleven times the seventh 

term.  



14 
 

Indeed, in the case of the sequence (𝐹𝑛), we have 𝐹7 = 13  while 𝑆10 = 𝐹12 − 1 = 143 and thus, 

𝑆10 = 11 × 𝐹7 as claimed. 

More generally, from the previous result we have 𝑡7 = 𝐹5𝑎 + 𝐹6𝑏 = 5𝑎 + 8𝑏 while 

𝑠10 = 𝐹10𝑎 + (𝐹11 − 1)𝑏 = 55𝑎 + 88𝑏. Again, 𝑠10 = 11 × 𝑡7, and this explains the classroom 

activity described above. 

Further relations between terms of these sequences and certain elements of the corresponding 

sequences of partial sums exist. For example, it can be observed that the following equations hold: 

𝑠2 = 𝑡3 

𝑠6 = 4𝑡5 

𝑠10 = 11𝑡7  

𝑠14 = 29𝑡9  

𝑠18 = 76𝑡11 

𝑠22 = 199𝑡13 . 

This sequence of equations is summarised by 

𝑠4𝑛−2 = 𝑐𝑛𝑡2𝑛+1 

where the sequence of coefficients is given by 𝑐𝑛 = {
1                          𝑛 = 1
4                          𝑛 = 2
3𝑐𝑛−1 − 𝑐𝑛−2   𝑛 > 2

 

This recurrence relation has an explicit solution involving the quantities 𝜑+ and 𝜑−, but it is more 

usefully expressed as  

𝑐𝑛 = 2𝐹2𝑛 − 𝐹2𝑛−1 

To verify the assertion that 𝑠4𝑛−2 = 𝑐𝑛𝑡2𝑛+1 it is necessary to prove the equivalent statement 

𝐹4𝑛−2𝑎 + (𝐹4𝑛−1 − 1)𝑏 = (2𝐹2𝑛 − 𝐹2𝑛−1)(𝐹2𝑛−1𝑎 + 𝐹2𝑛𝑏). 

This holds if both 

𝐹4𝑛−2 = (2𝐹2𝑛 − 𝐹2𝑛−1)𝐹2𝑛−1 

and 

𝐹4𝑛−1 − 1 = (2𝐹2𝑛 − 𝐹2𝑛−1)𝐹2𝑛 . 

Identities (2), (5) and (6) can be used in inductive proofs of these statements. 

Home 
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Partial sums of Fibonacci squares 

The sum of the squares of the first 𝑛 Fibonacci numbers is the product of 𝐹𝑛𝐹𝑛+1. Clearly,  

12 + 12 = 1 × 2 and 12 + 12 + 22 = 2 × 3, and 12 + 12 + 22 + 32 = 3 × 5. If it is assumed that 

the pattern continues up to the sum of the first 𝑘 squares, that is,  

∑ 𝐹𝑖
2

𝑘

𝑖=1
= 𝐹𝑘𝐹𝑘+1 

then adding the next square gives the inductive step 

∑ 𝐹𝑖
2

𝑘

𝑖=1
+ 𝐹𝑘+1

2 = 𝐹𝑘𝐹𝑘+1 + 𝐹𝑘+1
2 = 𝐹𝑘+1(𝐹𝑘 + 𝐹𝑘+1) = 𝐹𝑘+1𝐹𝑘+2 

It follows that  

∑ 𝐹𝑖
2

𝑛

𝑖=1
= 𝐹𝑛𝐹𝑛+1   ∀𝑛 ∈ ℤ

+ 

However, the conclusion is visible in the following diagram. The area of the rectangle is both the sum 

of Fibonacci squares and the product of two Fibonacci numbers. 

 

 

 

 

 

 

 

 

 

 

The diagram also shows that the Fibonacci squares tile the plane. 

 

Almost-isosceles Pythagorean triples 

Solutions (𝑎, 𝑏, 𝑐) in positive integers of the equation 𝑥2 + 𝑦2 = 𝑧2 are called Pythagorean triples 

due to their association with the sides of right triangles. It is well known that the countably infinite 

set of Diophantine solutions is given by 

𝑎 = 2𝑝𝑞, 𝑏 = 𝑝2 − 𝑞2, 𝑐 = 𝑝2 + 𝑞2 . 

When 𝑎, 𝑏, 𝑐 have no common factors, the solutions are called primitive Pythagorean triples. They 

occur when 𝑝 > 𝑞, 𝑝 and 𝑞 have opposite parity, and 𝑝 and 𝑞 are coprime.  

1 1 

2 

3 

5 

8 

13 

21 

34 
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A non-empty subset of triples can be found such that 𝑎 and 𝑏 differ by 1. That is, 

|(𝑝2 − 𝑞2) − 2𝑝𝑞| = 1. 

The triples (3, 4, 5),  (20, 21, 29), and (119, 120, 169), to name a few, are in this subset. 

The quadratic equations implied by |(𝑝2 − 𝑞2) − 2𝑝𝑞| = 1 have solutions for positive 𝑝, 

𝑝 = 𝑞 +√2𝑞2 + 1          (1) 

and  

𝑝 = 𝑞 +√2𝑞2 − 1          (2) 

It can be shown (Turner, 2006) that integer values of 𝑝 come from the Lucas sequence 𝑈(2,−1). 

Specifically, (𝑡𝑛) = (1, 2, 5, 12, 29, 70,… ) with terms given by 

𝑡𝑛 = 2𝑡𝑛−1 + 𝑡𝑛−2, 𝑡1 = 1, 𝑡2 = 2.  

Equation (1) gives odd integer values for 𝑝 when 𝑞 is an even number in the sequence, while (2) 

gives even integer values when 𝑞 is an odd term from the sequence. That is, beginning with (1, 2, … ) 

we can generate successive terms iteratively using equations (1) and (2) in alternation. Each pair of 

successive terms gives rise to an almost isosceles Pythagorean triple. 

The sequence (𝑡𝑛) has characteristic equation is 𝑥2 − 2𝑥 − 1 = 0 with solutions 𝑥 = 1 ± √2. Thus, 

we deduce the explicit formula 

𝑡𝑛 =
√2

4
[(1 + √2)

𝑛
− (1 − √2)

𝑛
] . 

For example, a very nearly isosceles Pythagorean triple arises from 𝑡11 = 5741 and 𝑡12 = 13860, so 

that 

2𝑡11𝑡12 = 149140520 

and 

𝑡12
2 − 𝑡11

2 = 149140519. 

Home 

Tiling a 𝟏 × 𝒏 rectangle 

The Fibonacci number 𝐹𝑛+1 counts the number of ways in which a 1 × 𝑛 rectangle can be tiled with 

a collection of 1 × 1 and 1 × 2 tiles.  

To see this, let 𝑓(𝑛) be the number of ways in which a 1 × 𝑛 rectangle can be tiled with a collection 

of 1 × 1 and 1 × 2 tiles. Either the final tile is a 1 × 1 tile, in which case there were 𝑓(𝑛 − 1) ways 

the other tiles could have been laid, or the final tile is a 1 × 2 tile and there were 𝑓(𝑛 − 2) ways in 

which the other tiles could have been laid. Thus, there are 𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) ways in 
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which 𝑛 tiles can be laid. If 𝑛 = 2, it is apparent that 𝑓(2) = 2 and if 𝑛 = 3, then 𝑓(3) = 3. It 

follows that 𝑓(4) = 5 and 𝑓(𝑛) = 𝐹𝑛+1.  

Brent Yorgey (Yorgey, 2018) uses this fact to prove a theorem involving a sum of binomial 

coefficients. Consider the number of 1 × 2 tiles that could be chosen and, for each choice, the 

number of ways in which the tiles might be placed. If there are no 1 × 2 tiles, there are (
𝑛
0
) 

possibilities. If there is 1 1 × 2 tile, it can be placed in (
𝑛 − 1
1

) positions. If there are 𝑘 1 × 2 tiles 

they can be placed in (
𝑛 − 𝑘
𝑘

) places. In total, we see that 

𝐹𝑛+1 = (
𝑛
0
) + (

𝑛 − 1
1

) + ⋯+ (
𝑛 − 𝑘
𝑘

) +⋯ 

By convention, the binomial coefficients are 0 if 𝑘 > 𝑛 − 𝑘. To obtain finite sums, we can have  

𝑘 ≥  
𝑛

2
 when 𝑛 is even, and when 𝑛 is odd, we require 𝑘 ≥

𝑛

2
+
1

2
.  

So,  

𝐹2𝑘+1 = (
2𝑘
0
) + (

2𝑘 − 1
1

) + ⋯+ (
𝑘
𝑘
) 

and 

𝐹2𝑘 = (
2𝑘 − 1
0

) + (
2𝑘 − 2
1

) +⋯+ (
𝑘

𝑘 − 1
). 

 

Generating function 

Sequences are often specified concisely as the coefficients of the terms of a polynomial. For 

example, the sum 𝑆∞ = 𝑥 + 𝑥2 + 𝑥3 +⋯ generates the sequence 1, 1, 1, 1, … because the 

coefficients of the terms are all 1. On the other hand, provided |𝑥| < 1, it is well-known that 

𝑆∞ =
𝑥

1 − 𝑥
 

The function 𝑓(𝑥) =
𝑥

1−𝑥
 is said to be the generating function for the sequence 1, 1, 1, 1, … 

regardless of the values 𝑥 can take. 

The generating function for the Fibonacci sequence takes the form 

𝐴(𝑥) = 𝑥 + 𝑥2 + 2𝑥3 + 3𝑥4 + 5𝑥5 + 8𝑥6 +⋯ . Then 𝑥𝐴(𝑥) = 𝑥2 + 𝑥3 + 2𝑥4 + 3𝑥5 + 5𝑥6 +⋯ , 

and 𝐴(𝑥) − 𝑥𝐴(𝑥) = 𝑥 + 𝑥3 + 𝑥4 + 2𝑥5 + 3𝑥6 +⋯. Thus, 𝐴(𝑥)(1 − 𝑥) = 𝑥 + 𝑥2𝐴(𝑥). On 

rearranging this, we obtain the concise expression  

𝐴(𝑥) =
𝑥

1 − 𝑥 − 𝑥2
 . 
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The generating function can be used to deduce the explicit formula for Fibonacci terms. To achieve 

this, it is expanded again into a useful form. Note that the denominator 1 − 𝑥 − 𝑥2 is the negative of 

the characteristic equation of the Fibonacci sequence, which has zeros 𝜑+ =
1+√5

2
  and φ− =

1−√5

2
 . 

Hence, the zeros of 1 − 𝑥 − 𝑥2 are the negatives of these and therefore 𝐴(𝑥) can be written in the 

factorised form 

𝐴(𝑥) = −
𝑥

(𝑥 + 𝜑+)(𝑥 + φ−)
 . 

By the technique of partial fractions this is, 𝐴(𝑥) = −[

𝜑+

√5

𝑥+𝜑+
−

𝜑−

√5

𝑥+φ−
], or using 𝜑+𝜑− = −1, 

𝐴(𝑥) =
1

√5
[

1

1 − 𝑥𝜑+
−

1

1 − 𝑥𝜑−
] . 

The formal quantity 𝑥 can be chosen such that |𝑥𝜑+| < 1 and |𝑥𝜑−| < 1, so that the terms inside 

the bracket expand to the infinite series 1 + 𝑥𝜑− + (𝑥𝜑−)2 +⋯ and 1 + 𝑥𝜑+ + (𝑥𝜑+)2 +⋯ 

respectively. Putting the pieces together, we have 

𝐴(𝑥) =
1

√5
[( 𝑥𝜑+ + (𝑥𝜑+)2, … ) − ( 𝑥𝜑− + (𝑥𝜑−)2, … )] 

The 𝑛th term of the Fibonacci sequence is the coefficient of the 𝑛th term of 𝐴(𝑥), namely 

𝐹𝑛 =
1

√5
[(𝜑+)𝑛 − (𝜑−)𝑛] 
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