
TIP 14 and 15: Gardner Triples Supplement 

This piece follows up on two previous TIPs about Gardner Triples (GT’s). GTs arose from a geometric 

diagram that led to the recurrence !𝑎, 𝑏, !"#$
!

"%!
% in which the third term is an integer. Equivalently, 

we took 𝑎,𝑚, 𝑛, 𝑡 ∈ 𝑍#, 𝑚 ≤ 𝑛, with 𝑎 and 𝑡 coprime, and formed the general GT, denoted 

(𝑎, 𝑎 + 𝑚, 𝑎 + 𝑛)$ 

where 𝑚𝑛 = 𝑆 = 𝑎& + 𝑡&. The triple describes the identity tan%' $
!
= tan%' $

!#(
+ tan%' $

!#)
 . 

When 𝑡 = 1 (the type 1 Gardner Triple) the subscript is dropped. 
 
For example, for 𝑎 = 3 and 𝑡 = 4 we have 𝑆 = 25 and thus can choose (𝑚, 𝑛) = (1,25)	so that the 
GT (3,4,28)* describes the identity  tan%' *

+
= tan%' 1 + tan%' '

,
.  

 
Linking Gardner Triples 
 
Sometimes it is possible to link GTs together. For example, the GT with 𝑎 = 1 and 𝑡 = 1 becomes 
(1,2,3) and likewise the triple with 𝑎 = 3 and 𝑡 = 1 becomes (3,5,8).  
 
Thus, because tan%' 1 = tan%' '

&
+ tan%' '

+
 , and tan%' '

+
= tan%' '

-
+ tan%' '

.
 , we can write a 

combined statement tan%' 1 = tan%' '
&
+ tan%' '

-
+ tan%' '

.
 and denote it as a 4-tuple (1,2,5,8).  

  
Again, since (8,13,21) is also a GT, we can develop the 5-tuple (1,2,5,13,21). This process ultimately 
develops a beautiful statement linking 𝜋 to the odd numbered Fibonacci terms 
 

tan%' 1 = /
*
= tan%' '

&
+ tan%' '

-
+	tan%' '

'+
+ tan%' '

+*
+ tan%' '

.0
+⋯. 

 
That is to say, 𝜋 = 4∑ ! '

1!"#$
%2

)3'  , where 𝐹) is the 𝑛th Fibonacci number. 

 
More generally, by considering any type 𝑡 triple (𝑎, 𝑎 + 𝑚, 𝑎 + 𝑛)$, it is possible to create a new 
triple whose first term is any term of this triple, thereby enabling an infinite linking process.  
To see how this is done with the third term as the link, we might relabel the general GT as 
(𝑎', 𝑎' +𝑚', 𝑎' + 𝑛')$ and think about a new 𝑎& = 𝑎' + 𝑛'.  
 
We form a new sum of squares, 𝑆& = 𝑎&& + 𝑡& = (𝑎' + 𝑛')& + 𝑡&. This new sum simplifies to  
𝑆& = 𝑆' + 𝑛'(2𝑎' + 𝑛') = 𝑛'(𝑚' + 𝑛' + 2𝑎'). In this form it becomes clear that we can choose 
𝑚& = 𝑛' and 𝑛& = (𝑚' + 𝑛' + 2𝑎')  to form a second generation triple of the form  
[𝑎&, 𝑎& + 𝑛, 𝑎& + (𝑚' + 𝑛' + 2𝑎')]$. From this linking triple, we can build a third, fourth or fifth 
generation triple, and so on, all of which are related to the very first GT.  
 
For example, the GT (3,4,28)* mentioned above, with (𝑚', 𝑛') = (1,25), combines with 
(28,53,60)* to produce the 4-tuple (3, 4, 53, 60)*.  
 
We can easily check that tan%' *

+
= tan%' 1+	tan%' *

-+
+ tan%' '

'-
.  

 
Using the same strategy, with 𝑎& = 28, 𝑚& = 25 and 𝑛& = 32  we can link (28,53,60)* to the triple 
(60,92,173)* and produce the 5-tuple (3, 4, 53, 92, 173	)*. If we continue in this manner, we 
develop the 𝑛-tuple (3, 4, 53, 92, 286, 703, 1886,… )*. In a similar way, any term of a tuple can be 
taken to be the third term of some GT and thus, can be replaced by a pair of terms. 
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We can generate any number of expressions for 𝜋 using this strategy. For example, with 𝑎 = 2 and 
𝑡 = 2 , perhaps using a spreadsheet program, we can generate the linked GTs (2, 3, 10)&, 
(10, 18, 23)&, (23, 36, 64)& , (64, 105, 164)& , (164, 264, 433)& , …, making the 𝑛-tuple 
(2, 3, 18, 36, 105, 264,… )&. From this we deduce 

𝜋 = 4 $	tan!"
2
3 + 	tan

!" 1
9 + 	tan

!" 1
18 + 	tan

!" 2
105 + 	tan

!" 1
132 +⋯2 

If we relax the definitions slightly, allowing 𝑡 = √3 , then we can show that  

𝜋 = 3 3	tan!"
√3
2 + 	tan!"

√3
9 + 	tan!"

√3
19 + 	tan

!" √3
54 + 	tan

!" √3
137 + 	tan

!" √3
363 +⋯7 

Machin’s Formula from Gardner Triples 
 
John Machin (1686 -1751) a professor of astronomy at Gresham College London, in 1706 developed 
a quickly converging series for 𝜋 and used it to calculate the number correct to 100 decimal places. 
Contrast that with the efforts of Ludolph van Ceulen (1540 - 1610) the German mathematician who 
spent twenty five years of his life working out just 35 decimal places.   
 
Machin’s formula states that /

*
= 4 tan%' '

-
− tan%' '

&+0
 . We reverse engineered this result to show 

that it can be derived using Gardner triples. 

If 𝑎 = 119 and 𝑡 = 120, then 𝑆 = 2856 = 191&. We can choose 𝑚 = 𝑛 = 191, giving the GT 
(119, 288, 288)'&4. This amounts to saying that  tan%' '&4

''0
= 2 tan%' '&4

&..
. (As an aside, we note that 

this is an interesting choice because the set of numbers 119, 120, 191 is a Pythagorean Triple and 
such instances give rise to special GTs where angles with rational tangents have half angles whose 
tangents remain rational.)  

Then, putting 𝑚 = 1 and 𝑛 = 120, generates a second GT as (119, 120, 28680)'&4.   

This can be rewritten as [(288, 288), 120, 28680]'&4 where the first element 119 has been replaced 
by a nested expression that represents the sum 2 tan%' '&4

&..
.  The expression in square brackets is 

equivalent to [(36, 36), 15, 3585]'- when the common factor 8 is eliminated from each of the four 
terms.  

Thus, we have established that 2tan%' '-
+5
= tan%' 1 + tan%' '

&+0
, which can be easily verified.  

Using a similar strategy choose 𝑎 = 12 and 𝑡 = 5 so that  𝑆 = 169. With 𝑚 = 𝑛 = 13, create the 
triple (12, 25, 25)- and scale it up to (36,75,75)'- by introducing a common factor of 3.  

The GT [(36, 36), 15, 3585]'- can now be rewritten as [(75, 75, 75, 75), 15, 3585]'- and by 
eliminating the common factor of 15 this new expression is reduced to [(5, 5, 5, 5), 1, 239]'.  

Hence  4tan%' '
-
= tan%' 1 + tan%' '

&+0
 or, when simplified and rearranged, 

𝜋
4 = 4 tan!"

1
5 − tan

!" 1
239 


