Charles Dodgson (1832-1898) better known by his pen name Lewis Carroll, devised a fascinating method for calculating determinants. Naming it the 'method of condensation', Dodgson acknowledged that he had got the idea from a theorem proved several years earlier by the German mathematician Carl Gustav Jacobi (1804-1851). While that theorem is not described here, we can demonstrate the method with an order-4 example. It has four main steps.

Consider the 4×4 matrix A given by

$$
A=\left[\begin{array}{rrrl}
2 & 1 & 1 & 4 \\
1 & 2 & 1 & 6 \\
1 & 1 & -2 & -4 \\
2 & 1 & -3 & -8
\end{array}\right]
$$

The elements highlighted in red form the 'interior' matrix $\operatorname{Int}(A)=\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$. It plays a special role at the third step of the procedure. In general, $\operatorname{lnt}(M)$, for M an $n \times n$ matrix, will be an $(n-2) \times(n-2)$ matrix.

The first step is to form the matrix B (of an order one less than matrix A) made up of the $3^{2}=9$ 2×2 determinants of adjacent terms of A. We have maintained the colour coding to make it clear how each set of four elements are gathered.

$$
\left.\begin{array}{lll}
B_{11}=\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=3 & B_{12}=\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|=-1 & B_{13}=\left|\begin{array}{ll}
1 & 4 \\
1 & 6
\end{array}\right|=2 \\
B_{21}=\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|=-1 & B_{22}=\left|\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right|=-5 & B_{23}=\left|\begin{array}{cc}
1 & 6 \\
-2 & -4
\end{array}\right|=8
\end{array} \quad \text { Thus } B=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & -5 & 8 \\
-1 & -1 & 4
\end{array}\right]\right)
$$

The second step is to repeat the same procedure with matrix B to produce a new matrix C, again one order less than B. Matrix B has one interior element, and so $\operatorname{lnt}(B)=(-5)$. There are $2^{2}=4$ adjacent determinants determined as

$$
\begin{array}{ll}
C_{11}=\left|\begin{array}{cc}
3 & -1 \\
-1 & -5
\end{array}\right|=-16 & C_{12}=\left|\begin{array}{ll}
-1 & 2 \\
-5 & 8
\end{array}\right|=2 \\
C_{21}=\left|\begin{array}{ll}
-1 & -5 \\
-1 & -1
\end{array}\right|=-4 & C_{22}=\left|\begin{array}{ll}
-5 & 8 \\
-1 & 4
\end{array}\right|=-12
\end{array}
$$

$$
\text { Thus } C=\left[\begin{array}{cc}
-16 & 2 \\
-4 & -12
\end{array}\right]
$$

The third step is to divide each element of C by the corresponding elements of $\operatorname{Int}(A)$ to form the $(n-2) \times(n-2)$ matrix C^{\prime}, and then evaluate its determinant.

$$
\left|C^{\prime}\right|=\left|\begin{array}{cc}
\frac{-16}{2} & \frac{2}{1} \\
\frac{-4}{1} & \frac{-12}{-2}
\end{array}\right|=\left|\begin{array}{ll}
-8 & 2 \\
-4 & 6
\end{array}\right|=-40
$$

The fourth step is to divide $\left|C^{\prime}\right|$ by $\operatorname{lnt}(B)$ so that $|A|=\left|\frac{-40}{-5}\right|=8$.
Note that for a matrix M there may be instances where one or more elements of $\operatorname{Int}(M)$ are zero, rendering a division impossible. This is fixed by altering M at the beginning with suitable elementary row operations that don't change $|M|$. Recall that if a multiple of any row is subtracted from another row, the value of the determinant is unchanged.

