There are quite a number of proofs of the irrationality of $\sqrt{2}$ in the mathematical literature. All of them begin by assuming that the number is rational and then showing, through a series of logical steps, that the assumption leads to a contradiction.

For positive integers p and q, putting $\sqrt{2}=\frac{p}{q}$ leads easily to $p^{2}=2 q^{2}$. From that point, the various methods take different and interesting pathways. One of those methods, for example, depends on the fundamental law of arithmetic. The argument is that because p^{2} contains an even number of 2 s in its unique prime factorisation, it cannot be equal to $2 q^{2}$ because $2 q^{2}$ contains an odd number of them.

Another develops a parity argument. Given $p^{2}=2 q^{2}$ with $\frac{p}{q}$ in lowest terms, if q is even, then p is even, and there is an immediate contradiction because $\frac{p}{q}$ is already in lowest terms. If q is odd however, then p is still even, but then $p^{2}=2 q^{2}$ becomes $(2 m)^{2}=2(n+1)^{2}$ and that also leads to a contradiction.

Another type of proof is known as a proof by infinite descent. Here are two examples for the same positive integers p and q.

Proof 1

From $p^{2}=2 q^{2}$ it is obvious that $p>q>0$, and, because the right-hand side is clearly even, so also must p be even. So, for integer r, let $p=2 r$ so that $4 r^{2}=2 q^{2}$ simplifying to $q^{2}=2 r^{2}$ (note that $p>$ $q>r>0$).

However, this last equation has exactly the same form as the first one. Therefore, repeating the procedure for another integer s leads to $r^{2}=2 s^{2}$ with $p>q>r>s>0$. Each time the new integer gets smaller and smaller so that eventually the stock of available integers is exhausted irrespective of the choice of our starting integer p. It is a descent into an inevitable contradiction.

Proof 2

From $p^{2}=2 q^{2}$, subtract $p q$ from both sides and factorise so that $p(p-q)=q(2 q-p)$ and thus $\frac{p}{q}=\frac{2 q-p}{p-q}$. Since we know that $1<\sqrt{2}$ we can write that $1<\frac{p}{q}$ and consequently that $q<p, 2 q<2 p$ and, subtracting p from both sides, $2 q-p<p$. Also, since we know that $\sqrt{2}<2$ we can write that $\frac{p}{q}<2$ and consequently $p<2 q$ and thus $p-q<q$.

But this implies that there are two distinct but equal rational expressions for $\sqrt{2}$, with the new expression, say $\frac{p_{2}}{q_{2}}=\frac{2 q-p}{p-q}$ having both p_{2} and q_{2} respectively less than the numerator and denominator of $\frac{p}{q}$.

We could repeat the same procedure for $\frac{p_{2}}{q_{2}}$ to derive a third expression $\frac{p_{3}}{q_{3}}$ for $\sqrt{2}$ whose numerator and denominator would each be less than those of $\frac{p_{2}}{q_{2}}$. This process will descend to a contradiction.

Challenge 13: Prove the irrationality of \sqrt{p} for all prime p by using a proof that depends on the fundamental theorem of arithmetic.

