
 

TEACHER INSIGHT PAGES (TIPS) 
TIP 14 GARDNER TRIPLES, HOW?  

The celebrated three-square problem, shown below, involves proving geometrically, for angles 𝛼, 𝛽 
and 𝛾, that 𝛼 = 𝛽 + 𝛾 as shown here. 
 
 
 
 
 
 
In a series of published articles (Australian Senior Mathematics Journal, 2019), Paul Turner and I 
generalised this problem by considering, instead of unit squares, rectangles of varying width and 
constant height.  Specifically, for positive integers 𝑎, 𝑏, 𝑐 and 𝑡 we sought solutions to the equation 
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diagram depicts the generalisation. 
 
 
 
 
 
 
 
A convenient notation for solutions was adopted and named Gardner Triples, after Martin Gardner, 
the famous American recreational mathematics writer. Any type 𝑡 solution was referred to as 
(𝑎, 𝑏, 𝑐)!  with a simpler notation (𝑎, 𝑏, 𝑐) when 𝑡 = 1.  For example, the original three-square 
problem would be written (1,2,3). The method of obtaining solutions is described as follows.  
 
Choose two coprime integers 𝑎 and 𝑡. Sum their squares to obtain 𝑆. Find integers 𝑚 and 𝑛, 𝑚 < 𝑛, 
such that 𝑚𝑛 = 𝑆. Then (𝑎, 𝑎 +𝑚, 𝑎 + 𝑛)!  is a type 𝑡 Gardner triple. (See Tip 15 for an explanation.)  
 
For example, setting 𝑎 = 1 and 𝑡 = 1, we have 𝑆 = 2 and thus, (𝑚, 𝑛) = (1,2) and the type 1 Gardner 
triple is (1,2,3), as depicted in the original three-square puzzle. As another example, choosing 𝑎 = 3 
and 𝑡 = 5 shows 𝑆 = 34 so there are two candidate factor pairs (𝑚, 𝑛), namely (1,34) and (2,17). 
These lead to solutions of (3, 4,37)' and  (3, 5,20)'. In terms of the angles, this means that  
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Every set of three consecutive Fibonacci numbers 𝐹(),	𝐹()*#, 𝐹()*( is a type 1 Gardner triple. For 
example, the original problem (1,2,3) starting from 𝐹( is a Gardner triple. Likewise, (3,5,8)	, 
(8,13,21),	etc. are all Gardner triples, but there are many more families of triples to discover. 
 
As a final note, the authors defined a Gardner Triangle as a triangle with internal angles having 
rational tangents, as shown shaded below. Note that the external angle 𝛼 = 𝛽 + 𝛾 is the sum of the 
two interior opposite angles and thus the tangents of the internal angles are all rational. 
  
 
 
 
 

 
 
Challenge 14: Find a Gardner triple using 𝑎 = 5 and 𝑡 = 2.  
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