The celebrated three-square problem, shown below, involves proving geometrically, for angles α, β and γ, that $\alpha=\beta+\gamma$ as shown here.

In a series of published articles (Australian Senior Mathematics Journal, 2019), Paul Turner and I generalised this problem by considering, instead of unit squares, rectangles of varying width and constant height. Specifically, for positive integers a, b, c and t we sought solutions to the equation $\tan ^{-1}\left(\frac{t}{a}\right)=\tan ^{-1}\left(\frac{t}{b}\right)+\tan ^{-1}\left(\frac{t}{c}\right)$ where $\alpha=\tan ^{-1}\left(\frac{t}{a}\right), \beta=\tan ^{-1}\left(\frac{t}{b}\right)$, and $\gamma=\tan ^{-1}\left(\frac{t}{c}\right)$. The diagram depicts the generalisation.

A convenient notation for solutions was adopted and named Gardner Triples, after Martin Gardner, the famous American recreational mathematics writer. Any type t solution was referred to as $(a, b, c)_{t}$ with a simpler notation (a, b, c) when $t=1$. For example, the original three-square problem would be written ($1,2,3$). The method of obtaining solutions is described as follows.

Choose two coprime integers a and t. Sum their squares to obtain S. Find integers m and $n, m<n$, such that $m n=S$. Then $(a, a+m, a+n)_{t}$ is a type t Gardner triple. (See Tip 15 for an explanation.)

For example, setting $a=1$ and $t=1$, we have $S=2$ and thus, $(m, n)=(1,2)$ and the type 1 Gardner triple is $(1,2,3)$, as depicted in the original three-square puzzle. As another example, choosing $a=3$ and $t=5$ shows $S=34$ so there are two candidate factor pairs (m, n), namely $(1,34)$ and $(2,17)$. These lead to solutions of $(3,4,37)_{5}$ and $(3,5,20)_{5}$. In terms of the angles, this means that $\tan ^{-1}\left(\frac{5}{3}\right)=\tan ^{-1}\left(\frac{5}{4}\right)+\tan ^{-1}\left(\frac{5}{37}\right)$ and $\tan ^{-1}\left(\frac{5}{3}\right)=\tan ^{-1}(1)+\tan ^{-1}\left(\frac{1}{4}\right)$.

Every set of three consecutive Fibonacci numbers $F_{2 n}, F_{2 n+1}, F_{2 n+2}$ is a type 1 Gardner triple. For example, the original problem $(1,2,3)$ starting from F_{2} is a Gardner triple. Likewise, $(3,5,8)$, $(8,13,21)$, etc. are all Gardner triples, but there are many more families of triples to discover.

As a final note, the authors defined a Gardner Triangle as a triangle with internal angles having rational tangents, as shown shaded below. Note that the external angle $\alpha=\beta+\gamma$ is the sum of the two interior opposite angles and thus the tangents of the internal angles are all rational.

Challenge 14: Find a Gardner triple using $a=5$ and $t=2$.

