In TIP 14 we promised an explanation for our procedure for generating what we called Gardner triples. These were numbers notated $(a, b, c)_{t}$ arising from the following diagram, in which the angles satisfy $\alpha=\beta+\gamma$ and the lengths a, b, c and t are integer.

To form a connection between the angles and the lengths, we write $\gamma=\alpha-\beta$, then $\tan \gamma=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$. Thus, $\frac{t}{c}=\frac{\frac{t}{a}-\frac{t}{b}}{1+\frac{t^{2}}{a b}}$, which on being rearranged gives $c=\frac{a b+t^{2}}{b-a}$.

For c to be an integer, we require the difference $b-a=D$ to be a factor of the numerator $a b+t^{2}$. We eliminate b from the expression for c and write $c=a+\frac{a^{2}+t^{2}}{D}$ showing that D must divide a sum of two squares.

It is now possible to see why the procedure given in TIP 14 works. If $a^{2}+t^{2}$ is expressed as a product $m n$, we can let $D=m$, with $m \leq n$, so that, on expanding the Gardner triple notation $(a, b, c)_{t}$, we write $(a, a+m, a+n)_{t}$. While this explains the procedure, we must look further to understand what constraints on the divisor D are required to ensure that the Gardner triple definition is satisfied.

We conjectured that a Gardner triple exists if and only if the difference $b-a$ is 1 , or a prime of the form of the form $4 k+1$, or a product of such primes, or twice any of these quantities. The verification of the conjecture takes us well beyond secondary school mathematics.

To begin, we assume that a, b, c and t have no common factors since if they do the factors can be cancelled and the problem is merely rescaled. Note that if exactly one of a and t is even, then $a^{2}+t^{2}$ has the form $4 k+1$. If both are odd, then $a^{2}+t^{2}$ has the form $2(2 k+1)$. Clearly, D can contain the factor 2 at most once, which is consistent with the conjecture.

To proceed, we used results discovered by Diophantus, Euler, Fermat, Lagrange, Gauss and Dedekind. Briefly, these included:

- A product of two sums of two squares is also a sum of two squares. (Diophantus)
- If a number that is the sum of two squares is divisible by a prime that is the sum of two squares, then the quotient can be expressed as a sum of two squares. (Euler)
- A number that is not expressible as the sum of two squares cannot divide a sum of two squares. (Euler)
- If $p=4 k+1$ is prime, then there exists an integer m such that p divides $m^{2}+1$. (Lagrange, using Fermat's little theorem)
- Every $4 k+1$ prime is expressible as the sum of two squares. (Dedekind, using Gaussian integers, $m^{2}+1=(m+i)(m-i)$. Also proved by Euler by another method.)

