Thomas Carlyle (1795-1881), the British historian and mathematician, devised an ingenious geometric method for locating the roots of the quadratic equation $x^{2}-p x+q=0$ involving a ruler, a compass and a sharp pencil. The method is described as follows.

Plot the points $A(0,1), B(p, q)$ and their midpoint $C\left(\frac{p}{2}, \frac{1+q}{2}\right)$ on the cartesian plane. Draw in the circle, centre C radius $C A$ and read off the x intercepts x_{1} and x_{2}. These are the roots of the quadratic equation.

As an example, for $x^{2}-5 x+4=0$, the coordinates of the diameter's endpoints are $A(0,1)$, and $B(5,4)$. The centre C therefore has coordinates (2.5,2.5). With the compass centred at C open it to a radius of $C A$ and draw in the circle. Read off the circle's x intercepts as $x_{1}=1$ and $x_{2}=4$. You can readily check that these intercepts are the required roots of the quadratic equation.

Why it works

For the given points $A(0,1)$ and $B(p, q)$ we determine $C\left(\frac{p}{2}, \frac{1+q}{2}\right)$ with radius $A C$ given by the equation $r=\frac{1}{2} \sqrt{p^{2}+(q-1)^{2}}$. The circle's equation is then $\left(x-\frac{p}{2}\right)^{2}+\left(y-\frac{1+q}{2}\right)^{2}=\frac{p^{2}+(q-1)^{2}}{4}$.

Setting $y=0$ and simplifying reveals that the circle intersects the x-axis at $x=\frac{p \pm \sqrt{p^{2}-4 q}}{2}$. These are the roots of the quadratic equation.

If $p=q+1$ then $x_{1}=1$ and the circle has centre $C\left(\frac{p}{2}, \frac{p}{2}\right)$. This means the circle will be symmetrically positioned across the line $y=x$.

If $p^{2}=4 q$ the circle has centre $C\left(\frac{p}{2}, \frac{p^{2}+4}{8}\right)$ and is tangent to the x axis at $x_{1}=\frac{p}{2}$.

Challenge 2: The general Carlyle circle intersects the y axis in at most two places. One of them is $A(0,1)$. Find the other.

