An interesting way to locate the roots of a quadratic equation involves a suitable set square, a sharp pencil and a sheet of paper. The roots are found from a geometric construction and the technique is demonstrated here with the simple quadratic equation $x^{2}-5 x+6=0$ (although theoretically real roots can be located using the method for any polynomial of any degree). The coefficients are 1, -5 and 6 and these will become the lengths of three connected line segments.

Perhaps the best way to think about Lill's construction is to imagine it as the path made by a smart beetle that can walk forward or backward. We imagine the beetle starting from a point O facing to the right, as shown in the left diagram below. A positive coefficient informs it to move forward. Likewise, a negative coefficient informs the beetle to reverse. Because, in our example, the coefficient of x^{2} is 1 , the beetle begins by moving one unit forward to P. Upon arriving at P the beetle turns 90° anticlockwise as a preparation for its next move. This right-angle rotation ritual is repeated immediately after each move.

The coefficient of x is -5 and so we now imagine the beetle reversing from P (still facing toward P as it does so) a distance of 5 units downward to a point, say Q, whereupon it rotates 90° anticlockwise once again ready for its next move. Finally, the polynomial's constant term 6 sends the beetle forward to the left 6 units to R. The beetle again rotates 90° anticlockwise but then stops.

To locate the solutions, slide the set square into a position so that one side of it goes through the point O, the rightangled corner of it lies on $P Q$ and the other side goes through R. There are in fact only two positions that the set square's corner can be placed, and these correspond to the two roots of the quadratic equation. The first is $S_{1}(x=2)$ and by sliding the vertex of the set square downward and readjusting the two edges back onto O and R the second solution is also found at $S_{2}(x=3)$ Thus, it is the shuffling of the set square that actually solves the quadratic equation!

The two quadratic solutions turn out to be the negative reciprocals of the gradients of $O S_{1}$ and $O S_{2}$.
To understand why this is, note that the general equation $a x^{2}+b x+c=0$ can be written as two interlinked linear equations $(a x+b) x+c=B x+c=0$ and $B=a x+b$, implying that the solution set x must satisfy both $x=-\frac{c}{B}$ and $x=-\frac{b-B}{a}$. These equal quantities are none other than the gradients of $O S_{1}$ and $S_{1} R$ (and similarly for the second root S_{2}) on the two similar triangles $\triangle O P S_{1}$ and $\Delta S_{1} Q R$ formed by the set square. In our example, $B=-2$ or -3 .

The method, developed by Austrian engineer Eduard Lill in 1867, can be extended to the general polynomial equation of degree n.

Challenge 4: The diagram for the equation $x^{2}+2 x-3=0$ becomes the zig zag line $O P Q R$. To solve it, simply extend $P Q$ upward to allow the corner of the set square to lie on it. How are the solutions obtained? For more information click on the website below.

